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A novel analytical model to predict fracture resistance of a quasi-brittle material, like wood,
is presented. The model is based on a scaling parameter introduced into the non-local fracture
theory to take into account the specimen size effect on the development of the damage zone.
An expression for length of the critical process zone, which can be used in damage tolerant
design of wooden structures is derived from this theory. The model is validated with mixed-
mode bending tests. A numerical analysis using cohesive elements is performed to understand
the role of specimen size in the development of the damage zone. The analytical predictions
of the fracture resistance and the critical process zone length for wood are compared with
numerical results and experimental data available in the literature.
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1. Introduction

Two approaches have been reported in the literature to consider damage processes occurring
ahead of the crack tip in quasi-brittle materials: the concept of cohesive fracture models orig-
inated by Barenblatt (1962) and Dugdale (1960) and the concept of non-local fracture models
introduced by Novozhilov (1969). The first approach is through decohesion of the upper and
lower surfaces of the process zone ahead of the crack tip. The second approach involves av-
eraging of the stresses over this zone. It can be seen in Fig. 1 that the averaged stress over
the length Lcz cannot exceed the strength of the material in the non-local model, whereas the
cohesive model assumes a gradual loss of stiffness over the length Lcz.

Fig. 1. Stress distribution ahead of the crack tip

Development of the fracture process zone (FPZ) in a quasi-brittle material like wood leads
to a stable crack growth before the complete fracture (Morel et al., 2005). The ability to predict
the stable growth of a pre-existing crack under a mixed-mode loading is a key requirement in
damage tolerant design of wooden structures. In recent studies (de Moura et al., 2010; Phan et
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al., 2016), the initiation and propagation fracture toughnesses of wood under the mixed-mode
loading have been typically described by an empirical power law combining energy release rates
in mode I and II with their critical values, i.e. (GI/GIc)

m + (GII/GIIc)
n = 1, where m, n are

constants.

Originally developed by Reeder and Crews (1990) to study the mixed-mode interlaminar
fracture toughness of composite laminates, the mixed-mode bending test (MMB) was also used to
investigate the resistance to crack growth in wood (de Moura et al., 2010; Phan et al., 2016). The
use of this test is justified by the fact that it is capable of keeping a constant mixed-mode ratio
during crack growth. In the framework of equivalent linear elastic fracture mechanics (LEFM)
proposed by Bazant and Kazemi (1990), the secant compliance estimated from any point of the
load-displacement curve corresponds to the initial elastic compliance of the cracked specimen, in
which the crack length is given by the actual one plus a correction due to the FPZ development,
i.e. aeq = a0+∆a. Using this approach, it has been found that variations of mode I and mode II
energy release rates with crack length (R-curves) for wood follow an initially increasing trend
before reaching a plateau, which indicates the appearance of self-similar propagation of the main
crack with its critical FPZ.

Numerous analytical and numerical models have been proposed to calculate the variation
of the energy release rate directly from the MMB test data. Within the framework of simple
beam theory, the cracked specimen is considered as an assemblage of three rigidly connected
sublaminates (Reeder and Crews, 1990). In order to take into account the effects of deflections
and rotations at the crack tip, crack length corrections are introduced into the simple beam
theory (Williams, 1989; Wang and Williams, 1992). According to enhanced beam theory, the
two sublaminates are partially connected by a deformable interface to take into account the crack
propagation. Splitting of the two sublaminates is modeled by applying elastic brittle (Bennati et
al., 2013a,b) or elastic damaging constitutive laws (Xie et al., 2016a,b). Compared to the simple
beam theory, the enhanced beam theory is capable of capturing the pre-peak nonlinearity of load-
-displacement response. However, due to the assumptions of the beam theory, it over-predicts the
pre-peak stiffness and process zone length. Numerical simulations of the MMB test are typically
performed in the framework of the finite element method by using the virtual crack closure
technique (Xie and Biggers, 2006; Oliveira et al., 2007) or the cohesive zone model (Alfano and
Crisfield, 2001; Camanho and Dávila, 2002). The main difference between them is that the latter
has the capability to model damage mechanisms, whereas the former does not. However, since
numerical predictions are mesh-dependent, care must be taken to ensure that element sizes are
capable of capturing strain and stress gradients near the crack tip.

The objective of this paper is to show that the non-local fracture theory proposed by Seweryn
and Mróz (1998) is capable of predicting the propagation fracture toughness of wood under
mixed-mode loading conditions. To date, only the initiation fracture toughness of wood has
been analyzed by using this fracture theory (e.g. Romanowicz, 2019). In previous papers, it
has been assumed that the compliance within the damage zone and the process zone length
are material properties. Extension of the non-local fracture theory to the study of the crack
propagation resistance requires redefining these concepts. In this paper, the quasi-brittle fracture
characteristics predicted from the extended non-local theory are verified against MMB test
data available in the literature and numerical simulations accounting for cohesive properties of
wood.

2. Non-local theory of quasi-brittle fracture

In this Section, a novel analytical approach for estimating the critical process zone length Lcz
based on the non-local fracture theory is presented. According to the non-local fracture theory
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proposed by Seweryn and Mróz (1998), a crack starts to grow when a stress function R(σθ, τrθ)
averaged over the process zone length lcz reaches the maximum value

max

(

1

l

lcz
∫

0

R(σθ, τrθ) dr

)

= 1 (2.1)

where σθ, τrθ are the stress components in a polar coordinate system (r, θ) originated at the
crack tip. This fracture theory is motivated by the fact that the stress distribution within the
process zone is difficult to estimate precisely. For this reason, it is convenient to use the average
value of stress. For a damage zone weakened by microcracks, Seweryn and Mróz (1998) proposed
the following elliptic function for calculating the fracture toughness

R(σθ, τrθ) =

√

(σθ
σc

)2
+ ρ

(τrθ
σc

)2
(2.2)

where σc is the tensile strength representing the ratio of the sliding and extensional compliance
of the material within the damage zone. Maximizing the average value of R(σθ, τrθ) with respect
to θ, the location of the critical plane is determined. The non-local model of crack propagation
is formulated by assuming that the process zone length is much less than the crack length. On
this assumption, the stress distribution associated with damage mechanisms occurring ahead of
the crack tip is dominated by a singular crack tip solution of the type r−0.5. It was reported
by Romanowicz (2019) that the stress function (2.2) has for orthotropic materials its maximum
at θ = 0◦ if the reinforcement direction coincided with the crack axis. Thus, in the case of
self-similar crack growth, stress function (2.2) can be expressed as

R(σθ, τrθ) =
1

σc

√

K2I
2πr
+ ρ
K2II
2πr

(2.3)

where KI , KII are stress intensity factors for pure opening and pure sliding modes, respectively.
Substituting (2.3) into (2.1) and integrating from r = 0 to r = lcz the non-local criterion of
crack propagation is given in terms of stress intensity factors as

K2I + ρK
2
II =

lczσ
2
cπ

2
(2.4)

On the assumptions of LEFM, the stress intensity factors for orthotropic materials are related
to strain energy release rates by the relationship proposed by Sih et al. (1965)

G = GI +GII =
K2I
EI
+
K2II
EII

(2.5)

where: G, GI , GII are total, mode I and II energy release rates, respectively, EI , EII are
generalized elastic moduli. The procedure for calculating EI , EII is provided in Appendix A.
One potential limitation in application of Eq. (2.4) is that the compliance ratio is, in general, an
unknown parameter. In order to overcome this limitation, the ratio can be calibrated by fitting
theoretical predictions to experimental data. In this paper, the compliance ratio is thus defined
as some multiple of the ratio between EI and EII

ρ =
EI
nEII

(2.6)

where n is an empirical parameter. In the previous papers on the initiation fracture toughness
of wood (Romanowicz, 2019), the compliance ratio was assumed to be ρ = (KIc/KIIc)

2, where
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KIc and KIIc are mode I and II critical stress intensity factors. By using Eqs. (2.5) and (2.6),
the non-local criterion of crack propagation (2.4) can be now expressed in terms of mode I and II
energy release rates as

nGI +GII =
lczσ

2
cπn

2EI
(2.7)

When the process zone is fully developed lcz = Lcz, the fracture resistance can be estimated from
the strain energy release rate as G = GR. Formally, substituting lcz = Lcz into (2.7) means that
the non-local criterion predicts the moment of complete fracture. In this paper, the value of Lcz
is chosen so as to make non-local criterion (2.7) equivalent to the semi-empirical mixed-mode
propagation criterion proposed by Benzeggagh and Kenane (1996). According to this criterion,
the total fracture resistance is a power function of the mixed-mode ratio GII/G

GR = GIR + (GIIR −GIR)
(GII
G

)m
(2.8)

where: GR, GIR , GIIR are total, mode I and II fracture resistances, m is an empirical parameter.
Since the strength σc and modulusEI are constants, it is reasonable to assume that the length Lcz
occurring in non-local criterion (2.7) should follow the same trend as the fracture resistance GR
predicted by the Benzeggagh and Kenane criterion. It should be noted that it is possible to
rewrite the Benzeggagh and Kenane criterion so that the left hand sides of Eqs. (2.7) and (2.8)
are equal when lcz = Lcz

nGIR +GIIR = nGIR + (GIIR −GIR)
(GII
G

)m
(2.9)

Finally, by equating the right hand sides of Eqs. (2.7) and (2.9), the length of the fully developed
process zone can be written as a power function of the mixed-mode ratio GII/G

Lcz =
2EI
σ2cπn

[

nGIR + (GIIR −GIR)
(GII
G

)m]

(2.10)

Substituting (2.10) into (2.7), the non-local criterion takes the form of the Benzeggagh and
Kenane criterion. Mode I and II process zone lengths are calculated by setting GII/G = 0 and
GII/G = 1 in (2.10), as follows

LIcz =
2EIGIR
σ2cπ

LIIcz =
2EI
σ2cπn

[GIIR + (n− 1)GIR] (2.11)

Figure 2 shows solutions of the dimensionless characteristic length Lcz for a fixed value of m and
various values of n. It is interesting to note that the variation of process zone length with ratio
GII/G becomes smaller as n increases and for large values of n, a constant process zone length
equal to LIcz is observed. From Eqs. (2.11), mode I process zone length is not influenced by the
parameter n and when n = 1, mode II process zone length can be written in terms of GIIR only.
Based on these findings, the parameter n controls the value of mode II process zone length and
the steepness of the curve describing the relationship between the process zone length and the
mixed-mode ratio. It can be interpreted as a scaling parameter for the ratio of the sliding and
extensional compliance of the material within the damage zone.

3. Finite element simulations of quasi-brittle fracture

In this Section, the finite element implementation of a bilinear cohesive zone model proposed
by Alfano and Crisfield (2001) and Camanho and Dávila (2002) is presented to predict damage
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Fig. 2. Effect of the parameter n on the variation of dimensionless process zone length with the
mixed-mode ratio

evolution in wood. Finite element analyses have been conducted under mode I, mode II and
mixed-mode loading using the double cantilever beam (DCB), end notched flexure (ENF) and
mixed-mode bending (MMB) specimens, respectively. The deformed finite element meshes and
boundary conditions corresponding to these cases are shown in Fig. 3. The MMB test uses a lever
to simultaneously apply the loads which are similar to those applied to the DCB and ENF tests.
Mixed-mode ratios are controlled by the lever length c. Five different lever lengths c = 160, 200,
235, 335, 435mm are studied. The length 2L, width B and thickness 2h of the specimens are
750mm, 30mm and 30mm, respectively. The length of the support span 2l is fixed in all tests
at 650mm. The length of the pre-crack a0 measured from the beam support point is 227mm.
These specimens correspond to those used in experiments performed by Phan et al. (2016) on
Norway spruce in the TL crack system. The specimen material is assumed to be linearly elastic
and orthotropic (Table 1). The specimen geometry is meshed with two-dimensional plane strain
4 node elements in Ansys (PLANE182). The mesh is refined along a predefined crack path
located at the midplane of the specimen. The elements ahead of the crack tip have the length
0.6mm. Frictionless contact is assigned between the crack surfaces. The MMB test apparatus is
modeled explicitly using beam elements (BEAM188) with material properties much stiffer than
those of the specimen. In order to connect the rigid beam elements with the plane elements and
to enforce the appropriate boundary conditions, multi-point constraints (MPC184) are used.

Fig. 3. Finite element meshes and boundary conditions used in the simulations: (a) DCB test,
(b) ENF test, (c) MMB test
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Table 1. Elastic properties of Norway spruce (Dourado et al., 2008) and its tensile strength in
the tangential direction (Pedersen et al., 2003)

EL ER ET νTL νRL νTR GTL GRT GRL σTc
[MPa] [MPa] [MPa] [–] [–] [–] [MPa] [MPa] [MPa] [MPa]

9900 730 410 0.018 0.032 0.306 610 22 500 2.7

Crack propagation is modeled by using zero-thickness cohesive elements (INTER202) based
on a bilinear traction-separation constitutive relationship, σi = σi(δi), with i = I, II. The
response of cohesive elements is linear-elastic up to the onset of damage. After the damage onset,
the interface elements start losing their stiffness linearly. When the stiffness of the cohesive
elements reduces to zero, crack growth occurs. Mode I and mode II energy release rates are
calculated in Ansys as

GI =

δI
∫

0

σI dδI GII =

δII
∫

0

σII dδII (3.1)

The mixed-mode cohesive zone model implemented here requires two cohesive strengths σ0I
and σ0II , two separations at the onset of damage δ

0
I and δ

0
II , and two separations at the moment

of fracture δcI and δ
c
II to predict the evolution of damage. In order to ensure that both tractions

vanish simultaneously at complete separation, the ratios δ0I/δ
c
I and δ

0
II/δ

c
II are assumed to be

equal in the present study. For more information about the bilinear cohesive zone model, see
Appendix B.

Fig. 4. Development of the fracture process zone

A model of the fracture process zone and its finite element implementation is shown in
Fig. 4. The fracture process zone is a region ahead of the crack tip where the finite elements
experience irreversible deformation. The numerical process zone length Lcz is calculated by
adding the lengths of cohesive elements that are currently damaged Lcz =

∑

li. In order
to investigate the influence of cohesive strength on the load-deflection response and the pro-
cess zone length of Norway spruce, parametric studies under mode I and mode II conditions
have been conducted for experimentally established values of mode I and II fracture resistances
GIR = 0.286 N/mm, GIIR = 0.979N/mm (Phan et al., 2016). It can be seen in Figs. 5a and 5b
that as the cohesive strength increases, the peak load increases and the load-deflection response
gets closer to the linear elastic solution obtained by using the simple beam theory. Details of the
analytical solutions for the load-deflection response of the beam specimens can be found by Xie
et al. (2016a). It should be noted that the analytical solutions are for the case of infinitely stiff
interface with brittle failure (δ0I and δ

0
II → 0, σ

0
I and σ

0
II → ∞) and the observed deviation of
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the initial stiffness from the linear elastic solution is typical for numerical simulations that use
the bilinear cohesive zone model (e.g. Xie et al., 2016b).

Fig. 5. Effect of cohesive strength on the load-displacement response for (a) mode I and
(b) mode II loading

Fig. 6. Variation of the process zone length with cohesive strength for (a) mode I and (b) mode II
loading (experimental data from Phan et al. (2016))

As shown in Figs. 6a and 6b, the process zone length, on the contrary, decreases with the
increasing cohesive strength. This trend is found to agree with the analytical solution based on
the enhanced beam theory (Xie et al., 2016b)

LIcz =
1

2
4

√

EeffGIRh3

(σ0I )
2

LIIcz =
1

2

√

EeffGIRh

(σ0II)
2

(3.2)

where Eeff = EL(1 − νLRνRL) is found using the elastic constants (Table 1). Since the exper-
imental load-deflection curves for Norway spruce are not available in Phan et al. (2018), the
cohesive properties are calibrated in such a way that they satisfy equations

GIR =
1

2
σ0I δ
c
I GIIR =

1

2
σ0IIδ

c
II (3.3)

and simultaneously the fracture process zone lengths predicted from the finite element mod-
els correspond closely to the reference values obtained from the experiments LIcz = 29mm,
and LIIcz = 42.8mm (Phan et al., 2016). Taking the above into account, the interface with
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σ0I = 1.25MPa and σ
0
II = 6MPa is chosen for the rest of the study. It is interesting to note that

the adjusted value for the cohesive strength σ0I of Norway spruce is in good agreement with the
literature data σ0I = 1.66MPa (Dourado et al., 2008) obtained for different specimen types. All
cohesive properties used in the present study are summarized in Table 2.

Table 2. Cohesive properties of Norway spruce

σ0I δ0I δcI σ0II δ0II δcII
[MPa] [mm] [mm] [MPa] [mm] [mm]

1.25 0.04576 0.4576 6 0.03263 0.3263

Loads and deflections obtained from numerical simulations are processed with the compliance
based beam method (CBBM) proposed by de Moura et al. (2010) to achieve mode I and II
fracture resistances. CBBM is an example of the data reduction method which enables the
determination of strain energy release rates on the assumptions of equivalent LEFM based on
the theoretical specimen compliances

GI =
P 2I
2B

dCI
da

GII =
P 2II
2B

dCII
da

(3.4)

where PI , PII are mode I and II components of the applied load, CI , CII are mode I and II
compliances, B is the specimen width. For more information about this method, see Appendix C.

4. Results and discussion

In this Section, the theoretical and numerical predictions of the fracture resistance and the pro-
cess zone length of Norway spruce under combined mode I and mode II loadings are compared
with the experimental results reported by Phan et al. (2016). The key difference between exper-
imental and numerical techniques for analyzing the crack growth resistance lies in the way of
determining the crack length. In the experimental study performed by Phan et al. (2016), the
crack length is calculated by setting the experimental specimen compliance to the relationship
C(a) = δ/P between the compliance and crack length obtained from a linear-elastic finite ele-
ment analysis. In the present study, the crack length required by CBBM is estimated by setting
the numerical specimen compliance to the compliance function C(a) derived from the beam
theory (Appendix C).
Figures 7a and 7c show numerical predictions of the load-deflection and crack evolution

curves by the cohesive zone model for different loading conditions. It is interesting to note that
the crack starts to grow long before the peak load is reached. The observed pre-peak behavior is
associated with the formation of the fracture process zone. The location of the transition point
from stable to self-similar crack propagation on the crack evolution curve is found to appear
just behind the peak load on the load-deflection curve. The critical loads are depicted by arrows
in Figs. 7a-7c. It can be seen from these figures that the post-peak behavior under pure mode I
loading differs from those under pure mode II and mixed-mode loading. In the case of pure
mode I loading, the post-peak slope of both curves is almost constant, which is attributed to
the self-similar crack growth regime. In the cases of pure mode II and mixed-mode loading, the
post-peak slope of both curves changes because the specimens exhibit a load recovery when the
crack approaches the central loading point, a = 325mm.

In the framework of equivalent LEFM, the crack stability is characterized by a resistance
curve (R-curve) which indicates changes in the energy release rate as a function of crack length.
Evolutions of the resistance to crack growth in Norway spruce obtained from CBBM for dif-
ferent loading conditions are shown in Figs. 8a-8c. They start from initial nonzero values of
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Fig. 7. The load-displacement and crack evolution curves from (a) DCB test, (b) ENF test and
(c) MMB test

the energy release rate and consist of three distinct phases: the initial ascending phase followed
by a plateau, and then another ascending phase. The numerical results are compared with the
available experimental data (Phan et al., 2016) to assess the performance of CBBM for the pre-
diction of fracture resistance. Figure 9 compares the numerical predictions of R-curves obtained
for the lever length c = 160mm using average material properties with the test data obtained
from one specimen. It can be seen from this figure that CBBM fits the shape and magnitude of
the experimental data reasonably well.

As discussed in the previous Section, fracture simulations using the cohesive zone model are
capable of analyzing the development of the fracture process zone. The length of the process
zone is calculated as the maximum distance between the centers of two cohesive elements located
to the right of the current crack tip which have experienced damage. Numerical modeling of the
process zone length in Norway spruce as a function of the crack length for different mixed-mode
loading conditions is shown in Figs. 8a-8c. It can be seen that after the initial increase, the
process zone length reaches for each loading case its maximum value and then remains constant
over some increment of the crack length. The maximum value of the process zone length allows
us to estimate the onset of self-similar crack propagation and, in this way, to clearly identify the
point on the resistance curve where the fracture resistance is established. The fracture resistances
are depicted by arrows in Figs. 8a-8c. The total fracture resistances GR and the fully developed
cohesive zone lengths Lcz calculated in this way for seven different mixed-mode ratios GII/G
are shown in Figs. 10 and 11, respectively.
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Fig. 8. The resistance curves and variations in the process zone length during crack propagation for
(a) mode I, (b) mode II and (c) mixed-mode loading

Fig. 9. Comparison between the predicted and measured resistance curves for c = 160mm
(experimental data from Phan et al. (2016))
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Fig. 10. Comparison between the predicted and measured fracture resistance of Norway spruce
(experimental data from Phan et al. (2016))

Fig. 11. Comparison between the predicted and measured process zone length of Norway spruce
(experimental data from Phan et al. (2016))

Furthermore, Figs. 8a-8c show that it is only in the case of pure mode I loading that the
specimen is capable of keeping the maximum value of the process zone length during the entire
crack growth process. In the cases of pure mode II and mixed-mode loading, the process zone
length beyond the maximum value decreases with the increasing crack length. This is because
when the crack approaches the central loading point, the compressive stress zone at the center
of the specimen disturbs the development of the fracture process zone. Thus, the development of
the damage zone is influenced not only by the mixed-mode ratio but also by the specimen size.
This finding sheds new light on the role of the scaling parameter n in the theoretical solution of
the Lcz given by Eq. (2.10). It should be noted that there is a similarity between the theoretical
and numerical solutions of the process zone length for pure mode I loading, namely that the
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theoretical solution of the LIcz is not influenced by the parameter n, whereas the numerical
solution of LIcz is free from the specimen size effect.

Figures 10 and 11 compare the theoretical and numerical predictions of the fracture resistance
and critical process zone length of Norway spruce with the experimental data reported by Phan
et al. (2016). The measured fracture resistance and critical process zone length of wood increase
with an increase in the mixed-mode ratio. It can be seen from these figures that both the
numerical prediction as well the analytical solution follow the trend of experimental points. In
the case of the fracture resistance, the Benzeggagh and Kenane criterion with the parameter m
taking the value of 2 is in a better agreement with the experimental data than the numerical
prediction. In the case of the critical process zone length, the non-local fracture criterion with
the parameter n taking the value of 3 provides a slightly better fit to the experimental data
than the numerical prediction. The deviation of numerical predictions from experimental points
is caused by the approximation of the true cohesive behavior of wood by the bilinear traction-
-separation law. The discrepancy between the theoretical predictions and experimental points is
due to the fact that the fracture behavior is dependent not only on the specimen geometry and
loading conditions but is also affected by the cohesion between the crack surfaces, which is not
explicitly taken into account in the fracture criteria.

It should be noted that, similar to the parameter m, the parameter n is experimentally
calibrated. Since the value of LIcz is independent of n, only the value of LIIcz is fitted in the
calibration such that the shape of the theoretical curve describing the relationship between the
process zone length and mixed-mode ratio matches the shape obtained experimentally. The
value of mode II critical process zone length calculated for n = 3 is LIIcz = 39.2mm, whereas
the same length obtained without scaling the compliance of the damage zone, for n = 1, has
the value LIIcz = 74.3mm, which is far from the measured value. This finding shows that
the introduction of the parameter n into the non-local fracture model can be regarded as an
advantage. The physical explanation of the parameter n is as follows. Since geometry of the body
affects the development of the damage zone, it is reasonable to assume that the coalescence of
microcracks in infinite bodies differs from that in slender bodies, such as beams. This means that
the compliance of the damage zone depends on the specimen size and needs to be calibrated.
Furthermore, it should be noted that a similar calibration procedure, as described above, is
applied to the numerical model to estimate cohesive properties.

5. Conclusions

The applicability of non-local fracture theory to characterize fracture behavior of wood has been
verified by comparing theoretical predictions with experimental data available in the literature
and with numerical simulations accounting for cohesive properties of wood. The theoretical,
numerical and experimental results presented in this paper have shown that not only the fracture
resistance but also the process zone length depends nonlinearly on the mixed-mode ratio. The
non-local fracture theory offers the ability to model the quasi-brittle fracture in wood without
the need for using cohesive parameters which are difficult to estimate in practice. The concept
of introduction of a scaling parameter into the non-local fracture theory has been proposed
to take into account the specimen size effect on the development of the damage zone. The
use of this scaling parameter has significantly improved the accuracy of the prediction of the
critical process zone length. The ratio of the sliding and extensional compliance of the material
within the damage zone has been defined as the ratio between the generalized elastic moduli,
which has made it possible to achieve equivalence between the non-local and Benzeggagh and
Kenane predictions of the fracture resistance. In this way, for the first time, the non-local theory
has provided a physical explanation for the Benzeggagh and Kenane empirical criterion. The
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comparison has shown that with much lower computational complexity, the proposed non-local
model achieves a better efficiency than the numerical simulations.
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Appendix A. Calculation of generalized elastic moduli

Following Sih et al. (1965), energy release rates can be related to stress intensity factors through
generalized elastic moduli. Under plane strain conditions, the generalized elastic moduli EI
and EII in the global coordinate system (x1, x2, x3) aligned with the principal axes of orthotropy
(L, T,R) are given by

EI =

[

S′11S
′

22

2

(
√

S′22
S′11
+
2S′12 + S

′

66

2S′11

)]−0.5

EII =

[

(S′11)
2

2

(
√

S′22
S′11
+
2S′12 + S

′

66

2S′11

)]−0.5

(A.1)

where the constants S′11, S
′

12, S
′

22 and S
′

66 are related to components of the compliance ma-
trix {Sij} by

S′ij = Sij −
Si3Sj3
S33

i, j = 1, 2, 6 (A.2)

where the compliance matrix {Sij} relates the stress and strain components in the principal
material directions according to generalized Hooke’s law

εi = Sijσi i, j = 1, 2, . . . , 6 (A.3)

Appendix B. Bilinear mixed-mode cohesive zone model

The behavior of the material in the cohesive zone is assumed to be linear-elastic up to the
onset of damage, and after that, elastic damaging with linear softening is observed (Alfano and
Crisfield, 2001; Camanho and Dávila, 2002). The constitutive relationships between stresses σi
on the crack plane and the corresponding relative displacements δi are as follows

σi = ki(1− di)δi i = I, II (B.1)

where ki are the initial stiffness values and di are damage variables which satisfy the following
conditions

di =

{

0 when δi ¬ δ
0
i

1 when δi = δ
c
i

(B.2)

where δ0i , δ
c
i are separations at the onset of damage and at the moment of fracture, respectively.

When the material is under mixed-mode loading, the separation at damage onset is calculated
based on the quadratic stress criterion

(σI
σ0I

)2
+
(σII
σ0II

)2
= 1 (B.3)
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where σ0I and σ
0
II are cohesive strengths. Using (B.3), the mixed-mode relative displacement

corresponding to the onset of softening is given by

δ0m =

√

(δ0I )
2(δ0II)

2
1 + β2

(δ0II)
2 + β2(δ0I )

2
(B.4)

where β = δII/δI is the mixed-mode ratio. The separation at fracture is calculated based on the
linear energetic criterion

GI
GcI
+
GII
GcII
= 1 (B.5)

where GcI and G
c
II are the critical strain energy release rates. Using (B.5), the mixed-mode

relative displacement corresponding to total decohesion is given by

δcm =
2(1 + β2)

δ0m

( kI
GcI
+
β2kII
GcII

)−1
(B.6)

Appendix C. Equations of the compliance based beam method

In this paper, the strain energy release rates GI and GII are calculated using the Compliance
Based Beam Method proposed by de Moura et al. (2010). Since the MMB test combines the
DCB and ENF tests, equations for the strain energy release rate from these tests are used to
calculate individual components of G for the MMB test. Mode I component is given by

GI =
6P 2I
B2h

( 2a2eqI
EfIh2

+
1

5GLT

)

(C.1)

where aeqI is the equivalent crack length in mode I estimated from the current specimen com-
pliance

CI =
8a2eqI
EfIBh2

+
12aeqI
5BhGLR

(C.2)

and EfI is the flexural modulus in mode I estimated from the initial specimen compliance C0I

EfI =
8(a0 +∆)

3

Bh3

(

C0I −
12(a0 +∆)

5BhGLT

)−1
(C.3)

where a0 is the initial crack length, B and h are width and half-thickness of the specimen,
respectively, constants ∆ and Γ are given by

∆ = h

√

EfI
11GLT

[

3− 2
( Γ

1 + Γ

)2]

Γ = 1.18

√

EfIET
GLT

(C.4)

where EL, ET and GLT are the longitudinal, tangential and shear moduli, respectively. Mode II
component is given by

GII =
(9P 2IIa

2
eqII

16EfIIB2h3
(C.5)

where EfII is the flexural modulus in mode II estimated from the initial specimen compli-
ance C0II

EfII =
3a30 + 2l

3

8Bh3

(

C0II −
3l

10GLTBh

)−1
(C.6)
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and aeqII is the equivalent crack length in mode II estimated from the current specimen com-
pliance CII

aeqII =
[ CcorrII
C0corrII

a30 +
2

3

( CcorrII
C0corrII

− 1
)

l3
]1/3

(C.7)

where

CcorrII = CII −
3l

10GLTBh
C0corrII = C0II −

3l

10GLTBh
(C.8)

The load P applied to the MMB test can be separated into mode I and mode II loading com-
ponents as follows

PI =
3c− l

4l
P PII =

c+ l

l
P (C.9)

where l is the half span length of the beam, c is the lever length.
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